TIMSS 1999

International Science Report
Findings from IEA's Repeat of the Third International Mathematics and Science Study at the Eighth Grade

Michael O. Martin
Ina V.S. Mullis
Eugenio J. Gonzalez
Kelvin D. Gregory
Teresa A. Smith
Steven J. Chrostowski
Robert A. Garden
Kathleen M. O’Connor

The International Study Center
Boston College
Lynch School of Education

The International Association
for the Evaluation of
Educational Achievement

December 2000
CONTENTS

© 2000 International Association for the Evaluation of Educational Achievement (IEA)


Publisher: International Study Center
Lynch School of Education
Boston College

Library of Congress Catalog Card Number: 00-110267
ISBN 1-889938-16-5

For more information about TIMSS contact:
The International Study Center
Lynch School of Education
Campion Hall 332
Boston College
Chestnut Hill, MA 02467
United States

For information on ordering this report, write to the above address or call +1-617-552-1600

This report also is available on the World Wide Web: http://www.timss.org

Funding for the international coordination of TIMSS 1999 was provided by the National Center for Education Statistics of the U.S. Department of Education, the U.S. National Science Foundation, the World Bank, and participating countries. Each participating country was responsible for funding national project costs and implementing TIMSS 1999 in accordance with the international procedures.

Boston College is an equal opportunity, affirmative action employer.

Printed and bound in the United States

1 EXECUTIVE SUMMARY

4 Students’ Science Achievement
5 Students’ Home Environment and Attitudes Towards Science
6 The Science Curriculum
7 Instructional Contexts and Practices
9 School Factors

11 INTRODUCTION

13 What Is TIMSS?
13 What Is TIMSS 1999?
14 Who Conducted TIMSS 1999?
15 Which Countries Participated?
16 Exhibit 1 Countries Participating in TIMSS 1999
18 What Is the Comparability Across the Grades and Ages Tested?
19 Exhibit 2 Information About the Students Tested in TIMSS 1999
20 What Was the Nature of the Science Test?
22 How Do Country Characteristics Differ?
24 Exhibit 3 Selected Characteristics of TIMSS 1999 Countries
25 Exhibit 4 Selected Economic Indicators of TIMSS 1999 Countries
26 Exhibit 5 Organization of Science Instruction at Grade 8
CHAPTER 4
Students’ Backgrounds and Attitudes Towards Science

What Educational Resources Do Students Have in Their Homes?

117 Exhibit 4.1
Index of Home Educational Resources (HER)

120 Exhibit 4.2
Frequency with Which Students Speak Language of the Test at Home

124 Exhibit 4.3
Trends in Frequency with Which Students Speak Language of the Test at Home

125 Exhibit 4.4
Students’ Expectations for Finishing School

How Much of Their Out-of-School Time Do Students Spend on Homework During the School Week?

126 Exhibit 4.5
Index of Out-of-School Study Time (OST)

128 Exhibit 4.6
Trends in Index of Out-of-School Study Time (OST)

129 Exhibit 4.7
Total Amount of Out-of-School Time Students Spend Studying Science or Doing Science Homework on a Normal School Day

How Do Students Perceive Their Ability in the Sciences?

132 Exhibit 4.8
Index of Students’ Self-Concept in the Sciences (SCS)

138 Exhibit 4.9
Index of Students’ Self-Concept in the Sciences (SCS) by Gender

What Are Students’ Attitudes Towards the Sciences?

140 Exhibit 4.10
Index of Students’ Positive Attitudes Towards the Sciences (PATS)

148 Exhibit 4.11
Index of Positive Attitudes Towards the Sciences (PATS) by Gender

What Are Students’ Attitudes Towards the Sciences?

150 Exhibit 4.12
Trends in Index of Positive Attitudes Towards the Sciences (PATS)

152 Exhibit 4.13
Trends in Gender Differences in Percentages of Students at High Level of Index of Positive Attitudes Towards the Sciences (PATS)

CHAPTER 5
The Science Curriculum

Science Subjects Offered Up To and Including Eighth Grade

158 Exhibit 5.1
Science Subjects Offered Up to and Including Eighth Grade

160 Does Decision Making About the Intended Curriculum Take Place at the National or Local Level?

161 Exhibit 5.2
Science Curriculum

How Do Countries Support and Monitor Curriculum Implementation?

162 Exhibit 5.3
Methods Used to Support or Monitor Curriculum Implementation

164 What Countries Have Public Examinations in Science?

165 Exhibit 5.4
Public Examinations in Science

166 What Countries Have System-Wide Assessments in Science?

167 Exhibit 5.5
System-Wide Assessments in Science

168 How Much Instructional Time is Recommended for Science?

170 Exhibit 5.6
Instructional Time for Science

172 How Do Countries Deal with Individual Differences?

173 Exhibit 5.7
Differentiation of Instruction for Students with Different Abilities or Interests

What Are the Major Characteristics of the Intended Curriculum?

174 Exhibit 5.8
Emphasis on Approaches and Processes

176 What Science Content Do Teachers Emphasize at the Eighth Grade?

177 Exhibit 5.9
Subject Matter Emphasized Most in General/Integrated Science Class

178 What Science Topics Are Included in the Intended Curriculum?

180 Exhibit 5.10
Science Topics Included in the TIMSS Questionnaires

182 Exhibit 5.11
Science Topics in the Intended Curriculum for At Least 90% of Students, Up to and Including Eighth Grade
CHAPTER 6
Teachers and Instruction

183 Have Students Been Taught the Topics Tested by TIMSS?

185 Exhibit 5.12 Percentages of Students Taught Earth Science Topics

186 Exhibit 5.13 Percentages of Students Taught Biology Topics

187 Exhibit 5.14 Percentages of Students Taught Physics Topics

188 Exhibit 5.15 Percentages of Students Taught Chemistry Topics

189 Exhibit 5.16 Percentages of Students Taught Environmental and Resource Issues Topics

190 Exhibit 5.17 Percentages of Students Taught Scientific Inquiry and the Nature of Science Topics

191 Can Meaningful Comparisons Between Intended and Implemented Curricula Be Made?

187 What Preparation Do Teachers Have for Teaching Science?

198 Exhibit 6.1 Age and Gender of Teachers

200 Exhibit 6.2 Preparation to Teach the Sciences

204 Exhibit 6.3 Index of Teachers’ Confidence in Preparation to Teach Science (CPTS)

207 How Much School Time Is Devoted to Science Instruction?

208 Exhibit 6.4 Instructional Time in the Sciences at Grade 8

212 Exhibit 6.5 Number of Hours Science is Taught Weekly

214 Exhibit 6.6 Frequency of Outside Interruption During Science Lessons

216 What Activities Do Students Do in Their Science Lessons?

217 Exhibit 6.7 Science Class Size

218 Exhibit 6.8 Trends in Science Class Size

219 Exhibit 6.9 Time Spent on Various Activities in Science Class

220 Exhibit 6.10 Students Doing Various Activities in Science Class

224 Exhibit 6.11 Presentational Modes Used in Science Class

226 Exhibit 6.12 Index of Teachers’ Emphasis on Scientific Reasoning and Problem-Solving (ESRPS)

228 Exhibit 6.13 Trends in Index of Teachers’ Emphasis on Scientific Reasoning and Problem-Solving (ESRPS)

232 Exhibit 6.14 Index of Emphasis on Conducting Experiments in Science Classes (CECES)

236 How Are Computers Used?

238 Exhibit 6.15 Frequency of Computer Use in Science Classes

239 Exhibit 6.16 Trends in Frequency of Computer Use in Science Classes

240 Exhibit 6.17 Access to the Internet and Use of the Internet for Science Projects

241 What Are the Roles of Homework and Assessment?

244 Exhibit 6.18 Index of Teachers’ Emphasis on Science Homework (ESH)

246 Exhibit 6.19 Trends in Index of Teachers’ Emphasis on Science Homework (ESH)

247 Exhibit 6.20 Types of Assessment Teachers Give Quite A Lot or A Great Deal of Weight

CHAPTER 7
School Contexts for Learning and Instruction

251 What School Resources Are Available to Support Science Learning?

254 Exhibit 7.1 Index of Availability of School Resources for Science Instruction (ASRSI)

256 Exhibit 7.2 Trends in Index of Availability of School Resources for Science Instruction (ASRSI)

257 What Is the Role of the School Principal?

258 Exhibit 7.3 Time Principal Spends on Various School-Related Activities

259 What Are the Schools’ Expectations of Parents?

260 Exhibit 7.4 Schools’ Expectations for Parental Involvement

261 How Serious Are School Attendance Problems?

262 Exhibit 7.5 Index of Good School and Class Attendance (SCA)

264 Exhibit 7.6 Frequency and Seriousness of Student Attendance Problems

265 How Safe and Orderly Are Schools?

266 Exhibit 7.7 Frequency and Seriousness of Student Behavior Threatening an Orderly School Environment

268 Exhibit 7.8 Frequency and Seriousness of Student Behavior Threatening a Safe School Environment
REFERENCE 1
Students’ Backgrounds and Attitudes Towards Science

272 Exhibit R1.1 Educational Aids in the Home: Dictionary, Study Desk/Table, and Computer
273 Exhibit R1.2 Trends in Educational Aids in the Home
274 Exhibit R1.3 Number of Books in the Home
275 Exhibit R1.4 Trends in Number of Books in the Home
276 Exhibit R1.5 Highest Level of Education of Either Parent
278 Exhibit R1.6 Country Modifications to the Definitions of Educational Levels for Parents’ Education or Students’ Expectations for Finishing School
280 Exhibit R1.7 Students’ Perception of the Importance of Various Activities
281 Exhibit R1.8 Students’ Perception of Their Mothers’ View of the Importance of Various Activities
282 Exhibit R1.9 Students’ Perception of Their Friends’ View of the Importance of Various Activities
284 Exhibit R1.10 Why Students Need to Do Well in the Sciences
286 Exhibit R1.11 Students’ Daily Out-of-School Study Time
287 Exhibit R1.12 Trends in Students’ Daily Out-of-School Study Time
288 Exhibit R1.13 Students’ Daily Leisure Time
289 Exhibit R1.14 Students’ Reports That Science Is Not One of Their Strengths
290 Exhibit R1.15 Students’ Liking the Sciences
291 REFERENCE 2
The Science Curriculum

292 Exhibit R2.1
Achievement Standards in Science

293 Exhibit R2.2
Organization of Science Instruction

294 Exhibit R2.3
Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Earth Science

295 Exhibit R2.4
Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Biology

296 Exhibit R2.5
Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Chemistry

297 Exhibit R2.6
Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Physics

298 Exhibit R2.7
Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Environmental and Resource Issues

299 Exhibit R2.8
Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Scientific Inquiry and the Nature of Science

300 Exhibit R2.9
When Earth Science Topics Are Taught

301 Exhibit R2.10
When Biology Topics Are Taught

302 Exhibit R2.11
When Physics Topics Are Taught

303 Exhibit R2.12
When Chemistry Topics Are Taught

304 Exhibit R2.13
When Environmental and Resource Issues Topics Are Taught

305 Exhibit R2.14
When Scientific Inquiry Skills and the Nature of Science Topics Are Taught

307 REFERENCE 3
Teachers and Instruction

308 Exhibit R3.1
Teachers’ Major Area(s) of Study in Their BA, MA, or Teacher Training Certification

309 Exhibit R3.2
Teachers’ Confidence in Their Preparation to Teach Science Topics

310 Exhibit R3.3
Shortages of Teachers Qualified to Teach the Sciences Affecting Capacity to Provide Instruction

311 Exhibit R3.4
Percentage of Students Whose Science Teachers Agree or Strongly Agree with Statements About the Nature of Science and Science Teaching

312 Exhibit R3.5
Percentage of Students Whose Science Teachers Think Particular Abilities Are Very Important for Students’ Success in Science in School

313 Exhibit R3.6
Average Number of Instructional Days in the School Year

314 Exhibit R3.7
Instructional Time in School

315 Exhibit R3.8
How Teachers Spend Their Formally Scheduled School Time

316 Exhibit R3.9
Asking Students to Do Problem-Solving Activities During Science Lessons

317 Exhibit R3.10
Trends in Asking Students to Do Problem-Solving Activities During Most or Every Science Lesson

318 Exhibit R3.11
Teachers Demonstrating an Experiment in Science Classes

319 Exhibit R3.12
Trends in Teachers Demonstrating an Experiment in Science Classes

320 Exhibit R3.13
Students Doing an Experiment or Practical Investigation in Science Classes

321 Exhibit R3.14
Trends in Students Doing an Experiment or Practical Investigation in Science Classes

322 Exhibit R3.15
Students Using Things from Everyday Life in Solving Science Problems

323 Exhibit R3.16
Amount of Science Homework

324 Exhibit R3.17
Assigning Science Homework Based on Projects and Investigations

325 Exhibit R3.18
Frequency of Having a Quiz or Test in Science Classes

333 REFERENCE 4
School Contexts for Learning and Instruction

334 Exhibit R4.1
Shortages or Inadequacies in General Facilities and Materials That Affect Schools’ Capacity to Provide Instruction Some or A Lot

335 Exhibit R4.2
Shortages or Inadequacies in Equipment and Materials for Science Instruction That Affect Schools’ Capacity to Provide Instruction Some or A Lot

336 Exhibit R4.3
Availability of Computers for Instructional Purposes

337 Exhibit R4.4
Schools’ Access to the Internet
APPENDIX A
Overview of TIMSS Procedures: Science Achievement

History

Participants in TIMSS

Exhibit A.1
Countries Participating in TIMSS 1999 and 1995

Developing the TIMSS 1999 Science Test

Exhibit A.2
The Three Aspects and Major Categories of the Science Frameworks

Exhibit A.3
Distribution of Science Items by Content Reporting Category and Performance Category

Exhibit A.4
Distribution of Science Trend and Replacement Items by Content Reporting Category and Performance Category

TIMSS Test Design

Background Questionnaires

Translation and Verification

Population Definition and Sampling

Exhibit A.5
Coverage of TIMSS 1999 Target Population

Exhibit A.6
School Sample Sizes

Exhibit A.7
Student Sample Sizes

Exhibit A.8
Overall Participation Rates

Data Collection

Scoring the Free-Response Items

Exhibit A.9
TIMSS 1999 Within-Country Free-Response Scoring Reliability Data for Science Items

Test Reliability

Data Processing

Exhibit A.10
Cronbach’s Alpha Reliability Coefficient — TIMSS 1999 Science Test

IRT Scaling and Data Analysis

Estimating Sampling Error

Making Multiple Comparisons

Setting International Benchmarks of Student Achievement

Science Curriculum Questionnaire

Exhibit A.11
Country-Specific Variations in Science Topics in the Curriculum Questionnaire

APPENDIX B
Multiple Comparisons of Average Achievement in Science Content Areas

Exhibit B.1
Multiple Comparisons of Average Achievement in Earth Science

Exhibit B.2
Multiple Comparisons of Average Achievement in Life Science

Exhibit B.3
Multiple Comparisons of Average Achievement in Physics

Exhibit B.4
Multiple Comparisons of Average Achievement in Chemistry

Exhibit B.5
Multiple Comparisons of Average Achievement in Environmental and Resource Issues

Exhibit B.6
Multiple Comparisons of Average Achievement in Scientific Inquiry and the Nature of Science

APPENDIX C
The Test-Curriculum Matching Analysis: Science

Exhibit C.1
Average Percent Correct for Test-Curriculum Matching Analysis — Science

Exhibit C.2
Standard Errors for the Test-Curriculum Matching Analysis — Science

APPENDIX D
Percentiles and Standard Deviations of Science Achievement

Exhibit D.1
Percentiles of Achievement in Science

Exhibit D.2
Standard Deviations of Achievement in Science

APPENDIX E
Acknowledgments