Science Benchmarking Report
TIMSS 1999 – Eighth Grade
Achievement for U.S. States and Districts in an International Context

Michael O. Martin
Ina V.S. Mullis
Eugenio J. Gonzalez
Kathleen M. O’Connor
Steven J. Chrostowski
Kelvin D. Gregory
Teresa A. Smith
Robert A. Garden

April 2001
CHAPTER 4
Students’ Backgrounds and Attitudes Towards Science

111 What Educational Resources Do Students Have in Their Homes?
118 Exhibit 4.1
Index of Home Educational Resources (HER)
119 Exhibit 4.2
Students Having a Computer at Home
120 Exhibit 4.3
Frequency with Which Students Speak Language of the Test at Home
122 Exhibit 4.4
Students’ Race/Ethnicity
126 Exhibit 4.6
Index of Out-of-School Study Time (OST)
128 Exhibit 4.7
Total Amount of Out-of-School Time Students Spend Studying Science or Doing Science Homework on a Normal School Day
129 How Do Students Perceive Their Ability in the Sciences?
132 Exhibit 4.8
Index of Students’ Self-Concept in the Sciences (SCS)
136 Exhibit 4.9
Index of Students’ Self-Concept in the Sciences (SCS) by Gender
138 What Are Students’ Attitudes Towards the Sciences?
140 Exhibit 4.10
Index of Students’ Positive Attitudes Towards the Sciences (PATS)
144 Exhibit 4.11
Index of Students’ Positive Attitudes Towards the Sciences (PATS) by Gender

CHAPTER 5
The Science Curriculum

151 Science Subjects Offered Up To and Including Eighth Grade
152 Exhibit 5.1
Science Subjects Offered Up to and Including Eighth Grade
154 Does Decision Making About the Intended Curriculum Take Place at the National, Regional, or Local Level?
156 Exhibit 5.2
Countries’ Science Curriculum
157 Exhibit 5.3
States’ Curriculum Frameworks/Content Standards
158 Exhibit 5.4
Districts’ and Consortia’s Curriculum
159 How Do Education Systems Support and Monitor Curriculum Implementation?
161 Exhibit 5.5
Countries’ Use of Methods to Support or Monitor Implementation of the Curriculum
162 Exhibit 5.6
States’, Districts’ and Consortia’s Use of Textbooks and Instructional Materials to Support Implementation of the Curriculum
164 Exhibit 5.7
States’, Districts’ and Consortia’s Use of Pedagogical Guides to Support Implementation of the Curriculum
166 Exhibit 5.8
States’, Districts’ and Consortia’s Use of Accreditation to Support Implementation of the Curriculum
168 What TIMSS 1999 Countries Have Assessments And Exams in Science?
169 Exhibit 5.9
Countries’ System-Wide Assessments in Science
171 Exhibit 5.10
Countries’ Public Examinations in Science
172 What Benchmarking Jurisdictions Have Assessments in Science?
174 Exhibit 5.11
States’ Science Assessments
175 Exhibit 5.12
Status of State-Developed Science Assessments
176 Exhibit 5.13
States’ Use of Science Assessments with Consequences
178 Exhibit 5.14
Districts’ and Consortia’s State and Local Science Assessments
205 CHAPTER 6
Teachers and Instruction

180 How Do Education Systems Deal with Individual Differences?

181 Exhibit 5.15 Differentiation of Curriculum for Students with Different Abilities or Interests

182 What Are the Major Characteristics of the Intended Curriculum?

183 Exhibit 5.16 Emphasis on Approaches and Processes

185 What Science Content Do Teachers Emphasize at the Eighth Grade?

187 Exhibit 5.17 Subject Matter Emphasized Most in General/Integrated Science Class

188 What Science Topics Are Included in the Intended Curriculum?

190 Exhibit 5.18 Science Topics Included in the TIMSS Questionnaires

192 Exhibit 5.19 Science Topics in the Intended Curriculum for At Least 90% of Students, Up to and Including Eighth Grade

193 Have Students Been Taught the Topics Tested by TIMSS?

197 Exhibit 5.20 Percentages of Students Taught Earth Science Topics

198 Exhibit 5.21 Percentages of Students Taught Biology Topics

199 Exhibit 5.22 Percentages of Students Taught Physics Topics

200 Exhibit 5.23 Percentages of Students Taught Chemistry Topics

201 Exhibit 5.24 Percentages of Students Taught Environmental and Resource Issues Topics

202 Exhibit 5.25 Percentages of Students Taught Scientific Inquiry and the Nature of Science Topics

203 What Can Be Learned About the Science Curriculum?

208 What Preparation Do Teachers Have for Teaching Science?

213 Exhibit 6.1 Age and Gender of Teachers

214 Exhibit 6.2 Teachers’ Major Area of Study in Their BA, MA, or Teacher Training Certification Program

216 Exhibit 6.3 Index of Teachers’ Confidence in Preparation to Teach Science (CPTS)

218 How Much School Time Is Devoted to Science Instruction?

220 Exhibit 6.4 Instructional Time in the Sciences at Grade 8

222 Exhibit 6.5 Number of Hours Science Is Taught Weekly

224 Exhibit 6.6 Frequency of Outside Interruption During Science Lessons

227 What Activities Do Students Do in Their Science Lessons?

232 Exhibit 6.7 Science Class Size

233 Exhibit 6.8 Time Spent on Various Activities in Science Class

234 Exhibit 6.9 Students Doing Various Activities in Science Class

236 Exhibit 6.10 Presentational Modes Used in Science Class

238 Exhibit 6.11 Index of Teachers’ Emphasis on Scientific Reasoning and Problem-Solving (SRP)

240 Exhibit 6.12 Index of Emphasis on Conducting Experiments in Science Classes (ECES)

245 How Are Computers Used?

246 Exhibit 6.13 Frequency of Computer Use in Science Classes

247 Exhibit 6.14 Access to the Internet and Use of the Internet for Science Projects

248 What Are the Roles of Homework and Assessment?

250 Exhibit 6.15 Index of Teachers’ Emphasis on Science Homework (ESH)

252 Exhibit 6.16 Types of Assessment Teachers Give Quite a Lot or A Great Deal of Weight

253 In What Types of Professional Development Activities Do U.S. Science Teachers Participate?

255 Exhibit 6.17 Students Taught by Teachers Who Participated in Professional Development – Classroom Observation

256 Exhibit 6.18 Students Taught by Teachers Who Participated in Professional Development – School- and District-Based Activities

257 Exhibit 6.19 Students Taught by Teachers Who Participated in Professional Development – Workshops, Conferences, and Networks

258 Exhibit 6.20 Students Taught by Teachers Who Participated in Professional Development – Individual Activities

259 Exhibit 6.21 Professional Development Topics Emphasized Quite a Lot or A Great Deal

260 Exhibit 6.22 Content Areas Focused On in Professional Development

261 Exhibit 6.23 Familiarity with Curriculum Documents
<table>
<thead>
<tr>
<th>Page</th>
<th>Section Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>263</td>
<td>CHAPTER 7</td>
</tr>
<tr>
<td></td>
<td>School Contexts for Learning and Instruction</td>
</tr>
<tr>
<td>265</td>
<td>What Is the Economic Composition of the Student Body?</td>
</tr>
<tr>
<td>266</td>
<td>Exhibit 7.1 Students Eligible to Receive Free/Reduced Price Lunch</td>
</tr>
<tr>
<td>267</td>
<td>What School Resources Are Available to Support Science Learning?</td>
</tr>
<tr>
<td>270</td>
<td>Exhibit 7.2 Index of Availability of School Resources for Science Instruction (ASRSI)</td>
</tr>
<tr>
<td>272</td>
<td>What Is the Role of the School Principal?</td>
</tr>
<tr>
<td>273</td>
<td>Exhibit 7.3 Time Principal Spends on Various School-Related Activities</td>
</tr>
<tr>
<td>274</td>
<td>What Are the Schools’ Expectations of Parents?</td>
</tr>
<tr>
<td>275</td>
<td>Exhibit 7.4 Schools’ Expectations for Parental Involvement</td>
</tr>
<tr>
<td>277</td>
<td>How Serious Are School Attendance Problems?</td>
</tr>
<tr>
<td>278</td>
<td>Exhibit 7.5 Index of Good School and Class Attendance (SCA)</td>
</tr>
<tr>
<td>280</td>
<td>Exhibit 7.6 Frequency and Seriousness of Student Attendance Problems</td>
</tr>
<tr>
<td>281</td>
<td>How Safe and Orderly Are Schools?</td>
</tr>
<tr>
<td>283</td>
<td>Exhibit 7.7 Frequency and Seriousness of Student Behavior Threatening an Orderly School Environment</td>
</tr>
<tr>
<td>284</td>
<td>Exhibit 7.8 Frequency and Seriousness of Student Behavior Threatening a Safe School Environment</td>
</tr>
<tr>
<td>287</td>
<td>REFERENCE 1</td>
</tr>
<tr>
<td></td>
<td>Students’ Backgrounds and Attitudes Towards Science</td>
</tr>
<tr>
<td>289</td>
<td>Exhibit R1.1 Educational Aids in the Home: Dictionary, Study Desk/Table, and Computer</td>
</tr>
<tr>
<td>290</td>
<td>Exhibit R1.2 Number of Books in the Home</td>
</tr>
<tr>
<td>291</td>
<td>Exhibit R1.3 Highest Level of Education of Either Parent</td>
</tr>
<tr>
<td>292</td>
<td>Exhibit R1.4 Country Modifications to the Definitions of Educational Levels for Parents’ Education or Students’ Expectations for Finishing School</td>
</tr>
<tr>
<td>294</td>
<td>Exhibit R1.5 Students’ Perception of the Importance of Various Activities</td>
</tr>
<tr>
<td>295</td>
<td>Exhibit R1.6 Students’ Perception of Their Mothers’ View of the Importance of Various Activities</td>
</tr>
<tr>
<td>297</td>
<td>Exhibit R1.7 Students’ Perception of Their Friends’ View of the Importance of Various Activities</td>
</tr>
<tr>
<td>298</td>
<td>Exhibit R1.8 Why Students Need to Do Well in the Sciences</td>
</tr>
<tr>
<td>300</td>
<td>Exhibit R1.9 Students’ Daily Out-of-School Study Time</td>
</tr>
<tr>
<td>301</td>
<td>Exhibit R1.10 Students’ Daily Leisure Time</td>
</tr>
<tr>
<td>302</td>
<td>Exhibit R1.11 Students’ Reports That Science Is Not One of Their Strengths</td>
</tr>
<tr>
<td>303</td>
<td>Exhibit R1.12 Students’ Liking the Sciences</td>
</tr>
</tbody>
</table>
305 REFERENCE 2
The Science Curriculum

306 Exhibit R2.1 Organization of Science Instruction
307 Exhibit R2.2 Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Earth Science
308 Exhibit R2.3 Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Biology
309 Exhibit R2.4 Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Physics
310 Exhibit R2.5 Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Chemistry
311 Exhibit R2.6 Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Environmental and Resource Issues
312 Exhibit R2.7 Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Scientific Inquiry and the Nature of Science
313 Exhibit R2.8 When Earth Science Topics Are Taught
314 Exhibit R2.9 When Biology Topics Are Taught
315 Exhibit R2.10 When Physics Topics Are Taught
316 Exhibit R2.11 When Chemistry Topics Are Taught
317 Exhibit R2.12 When Environmental and Resource Issues Topics Are Taught
318 Exhibit R2.13 When Scientific Inquiry and the Nature of Science Topics Are Taught

319 REFERENCE 3
Teachers and Instruction

320 Exhibit R3.1 Teachers’ Confidence in Their Preparation to Teach Science Topics
321 Exhibit R3.2 Shortages of Teachers Qualified to Teach the Sciences Affecting Capacity to Provide Instruction
322 Exhibit R3.3 Percentage of Students Whose Science Teachers Agree or Strongly Agree with Statements About the Nature of Science and Science Teaching
323 Exhibit R3.4 Percentage of Students Whose Science Teachers Think Particular Abilities Are Very Important for Students’ Success in Science in School
324 Exhibit R3.5 How Teachers Spend Their Formally Scheduled School Time
325 Exhibit R3.6 Average Number of Instructional Days in the School Year
326 Exhibit R3.7 Asking Students to Do Problem-Solving Activities During Science Lessons
327 Exhibit R3.8 Teachers Demonstrating an Experiment in Science Classes
328 Exhibit R3.9 Students Doing an Experiment or Practical Investigation in Science Classes
329 Exhibit R3.10 Students Using Things from Everyday Life in Solving Science Problems
330 Exhibit R3.11 Amount of Science Homework
331 Exhibit R3.12 Assigning Science Homework Based on Projects and Investigations
332 Exhibit R3.13 Frequency of Having a Quiz or Test in Science Classes

337 REFERENCE 4
School Contexts for Learning and Instruction

338 Exhibit R4.1 Shortages or Inadequacies in General Facilities and Materials That Affect Schools’ Capacity to Provide Science Instruction Some or A Lot
339 Exhibit R4.2 Shortages or Inadequacies in Equipment and Materials for Science Instruction That Affect Schools’ Capacity to Provide Science Instruction Some or A Lot
340 Exhibit R4.3 Availability of Computers for Instructional Purposes
341 Exhibit R4.4 Schools’ Access to the Internet
APPENDIX A
Overview of TIMSS Benchmarking Procedures: Science Achievement

History
Participants in TIMSS Benchmarking
Developing the TIMSS 1999 Science Test
Exhibit A.1 The Three Aspects and Major Categories of the Science Frameworks
Exhibit A.2 Distribution of Science Items by Content Reporting Category and Performance Category
TIMSS Test Design
Background Questionnaires
Translation and Verification
Population Definition and Sampling
Exhibit A.3 Coverage of TIMSS 1999 Target Population – Countries
Exhibit A.4 School Sample Sizes – Countries
Exhibit A.5 Student Sample Sizes – Countries
Exhibit A.6 Overall Participation Rates – Countries
Data Collection
Scoring the Free-Response Items
Exhibit A.7 TIMSS 1999 Within-Country Free-Response Scoring Reliability Data for Science Items
Test Reliability
Exhibit A.8 Cronbach’s Alpha Reliability Coefficient – TIMSS 1999 Science Test
Data Processing
IRT Scaling and Data Analysis
Estimating Sampling Error
Making Multiple Comparisons
Setting International Benchmarks of Student Achievement
Science Curriculum Questionnaire
Exhibit A.9 Country-Specific Variations in Science Topics in the Curriculum Questionnaire
Exhibit A.10 State-Specific Variations in Science Topics in the Curriculum Questionnaire

APPENDIX B
Multiple Comparisons of Average Achievement in Science Content Areas

Exhibit B.1 Multiple Comparisons of Average Achievement in Earth Science
Exhibit B.2 Multiple Comparisons of Average Achievement in Life Science
Exhibit B.3 Multiple Comparisons of Average Achievement in Physics
Exhibit B.4 Multiple Comparisons of Average Achievement in Chemistry
Exhibit B.5 Multiple Comparisons of Average Achievement in Environmental and Resource Issues
Exhibit B.6 Multiple Comparisons of Average Achievement in Scientific Inquiry and the Nature of Science

APPENDIX C
Percentiles and Standard Deviations of Science Achievement

Exhibit C.1 Percentiles of Achievement in Science
Exhibit C.2 Standard Deviations of Achievement in Science

APPENDIX D
Descriptions of Science Items at Each Benchmark

APPENDIX E
Acknowledgments