Mathematics Benchmarking Report
TIMSS 1999 – Eighth Grade
Achievement for U.S. States and Districts in an International Context

Ina V.S. Mullis
Michael O. Martin
Eugenio J. Gonzalez
Kathleen M. O’Connor
Steven J. Chrostowski
Kelvin D. Gregory
Robert A. Garden
Teresa A. Smith

April 2001
CONTENTS

1 EXECUTIVE SUMMARY

3 Executive Summary

6 Major Findings from the TIMSS 1999 Benchmarking Study

13 INTRODUCTION

15 What Is TIMSS 1999 Benchmarking?

16 Why Did Countries, States, Districts, and Consortia Participate?

18 Which Countries, States, Districts, and Consortia Participated?

20 Exhibit 1
Participants in TIMSS 1999 Benchmarking

22 What Is the Relationship Between the TIMSS 1999 Data for the United States and the Data for the Benchmarking Study?

23 How Was the TIMSS 1999 Benchmarking Study Conducted?

24 What Was the Nature of the Mathematics Test?

25 How Does TIMSS 1999 Compare with NAEP?

26 How Do Country Characteristics Differ?

27 Exhibit 2
Selected Characteristics of TIMSS 1999 Countries

28 Exhibit 3
Selected Economic Indicators of TIMSS 1999 Countries

29 How Do the Benchmarking Jurisdictions Compare on Demographic Indicators?

31 Exhibit 4
Selected Characteristics of States, Districts and Consortia

32 How Is the Report Organized?
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Subsections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Student Achievement in Mathematics</td>
<td>33 How Do Participants Differ in Mathematics Achievement? 38 Distribution of Mathematics Achievement 40 Multiple Comparisons of Average Mathematics Achievement 42 How Do Benchmarking Participants Compare with International Benchmarks of Mathematics Achievement? 45 TIMSS 1999 International Benchmarks of Mathematics Achievement 46 Percentages of Students Reaching TIMSS 1999 International Benchmarks of Mathematics Achievement 48 What Are the Gender Differences in Mathematics Achievement? 50 Gender Differences in Average Mathematics Achievement 52 Percentages of Girls and Boys Reaching Each Participant’s Own Upper Quarter and Median Levels of Mathematics Achievement</td>
</tr>
<tr>
<td>2</td>
<td>Performance at International Benchmarks</td>
<td>55 How Were the Benchmark Descriptions Developed? 59 How Should the Descriptions Be Interpreted 60 Item Examples and Student Performance 61 Achievement at the Top 10% Benchmark 62 Exhibit 2.1 Description of Top 10% TIMSS International Benchmark of Mathematics Achievement 65 Exhibit 2.2–2.5 Top 10% TIMSS International Benchmark Example Items 69 Achievement at the Upper Quarter Benchmark 71 Exhibit 2.6 Description of Upper Quarter TIMSS International Benchmark of Mathematics Achievement 72 Exhibit 2.7–2.11 Upper Quarter TIMSS International Benchmark Example Items 77 Achievement at the Median Benchmark 79 Exhibit 2.12 Description of Median TIMSS International Benchmark of Mathematics Achievement 80 Exhibit 2.13–2.15 Median TIMSS International Benchmark Example Items 83 Achievement at the Lower Quarter Benchmark 85 Exhibit 2.16 Description of Lower Quarter TIMSS International Benchmark of Mathematics Achievement 86 Exhibit 2.17-2.20 Lower Quarter TIMSS International Benchmark Example Items 90 What Issues Emerge from the Benchmark Descriptions?</td>
</tr>
<tr>
<td>3</td>
<td>Average Achievement in the Mathematics Content Areas</td>
<td>91 How Does Achievement Differ Across Mathematics Content Areas? 94 Exhibit 3.1 Average Achievement in Mathematics Content Areas 99 In Which Content Areas Are Students Relatively Strong or Weak? 100 Exhibit 3.2 Countries’ Profiles of Relative Performance in Mathematics Content Areas 101 Exhibit 3.3 States’ Profiles of Relative Performance in Mathematics Content Areas 102 Exhibit 3.4 Districts’ and Consortia’s Profiles of Relative Performance in Mathematics Content Areas 103 What Are the Gender Differences in Achievement for the Content Areas? 104 Exhibit 3.5 Average Achievement in Mathematics Content Areas by Gender</td>
</tr>
</tbody>
</table>
CHAPTER 4
Students’ Backgrounds and Attitudes Towards Mathematics

109 What Educational Resources Do Students Have in Their Homes?

112 Exhibit 4.1 Index of Home Educational Resources (HER)
117 Exhibit 4.2 Students Having a Computer at Home
119 Exhibit 4.3 Frequency with Which Students Speak Language of the Test at Home
120 Exhibit 4.4 Students’ Race/Ethnicity
122 Exhibit 4.5 Students’ Expectations for Finishing School

123 How Much of Their Out-of-School Time Do Students Spend on Homework During the School Week?

126 Exhibit 4.6 Index of Out-of-School Study Time (OST)
128 Exhibit 4.7 Total Amount of Out-of-School Time Students Spend Studying Mathematics or Doing Mathematics Homework on a Normal School Day

129 How Do Students Perceive Their Ability in Mathematics?

130 Exhibit 4.8 Index of Students’ Self-Concept in Mathematics (SCM)
133 Exhibit 4.9 Index of Students’ Self-Concept in Mathematics (SCM) by Gender

134 What Are Students’ Attitudes Towards Mathematics?

136 Exhibit 4.10 Index of Students’ Positive Attitudes Towards Mathematics (PATM)
138 Exhibit 4.11 Index of Students’ Positive Attitudes Towards Mathematics (PATM) by Gender

CHAPTER 5
The Mathematics Curriculum

142 Does Decision Making About the Intended Curriculum Take Place at the National, State, or Local Level?

144 Exhibit 5.1 Countries’ Mathematics Curriculum
145 Exhibit 5.2 States’ Curriculum Frameworks/Content Standards
146 Exhibit 5.3 Districts’ and Consortia’s Curriculum

147 How Do Education Systems Support and Monitor Curriculum Implementation?

149 Exhibit 5.4 Countries’ Use of Methods to Support or Monitor Implementation of the Curriculum
150 Exhibit 5.5 States’, Districts’ and Consortia’s Use of Textbooks and Instructional Materials to Support Implementation of the Curriculum
152 Exhibit 5.6 States’, Districts’ and Consortia’s Use of Pedagogical Guides to Support Implementation of the Curriculum
154 Exhibit 5.7 States’, Districts’ and Consortia’s Use of Accreditation to Support Implementation of the Curriculum

157 What TIMSS 1999 Countries Have Assessments And Exams in Mathematics?

158 Exhibit 5.8 Countries’ System-Wide Assessments in Mathematics
159 Exhibit 5.9 Countries’ Public Examinations in Mathematics

160 What Benchmarking Jurisdictions Have Assessments in Mathematics?

162 Exhibit 5.10 States’ Mathematics Assessments
163 Exhibit 5.11 Status of State-Developed Mathematics Assessments
164 Exhibit 5.12 States’ Use of Mathematics Assessments with Consequences
166 Exhibit 5.13 Districts’ and Consortia’s State and Local Mathematics Assessments

168 How Do Education Systems Deal with Individual Differences?

169 Exhibit 5.14 Differentiation of Curriculum for Students with Different Abilities or Interests
170 What Are the Major Characteristics of the Intended Curriculum?

171 Exhibit 5.15
Emphasis on Approaches and Processes

172 What Mathematics Content Do Teachers Emphasize at the Eighth Grade?

174 Exhibit 5.16
Subject Matter Emphasized Most in Mathematics Class

175 Are There Policies on Using Calculators?

176 Exhibit 5.17
Policy on Calculator Usage

178 What Mathematics Topics Are Included in the Intended Curriculum?

180 Exhibit 5.18
Mathematics Topics Included in the TIMSS Questionnaires

182 Exhibit 5.19
Mathematics Topics in the Intended Curriculum for At Least 90% of Students, Up to and Including Eighth Grade

183 Have Students Been Taught the Topics Tested by TIMSS?

188 Exhibit 5.20
Percentages of Students Taught Fractions and Number Sense Topics

190 Exhibit 5.21
Percentages of Students Taught Measurement Topics

191 Exhibit 5.22
Percentages of Students Taught Data Representation, Analysis, and Probability Topics

192 Exhibit 5.23
Percentages of Students Taught Geometry Topics

193 Exhibit 5.24
Percentages of Students Taught Algebra Topics

194 What Can Be Learned About the Mathematics Curriculum?

199 What Preparation Do Teachers Have for Teaching Mathematics?

204 Exhibit 6.1
Age and Gender of Teachers

205 Exhibit 6.2
Teachers’ Major Area of Study in Their BA, MA, or Teacher Training Certification Program

206 Exhibit 6.3
Index of Teachers’ Confidence in Preparation to Teach Mathematics (CPTM)

208 How Much School Time Is Devoted to Mathematics Instruction?

210 Exhibit 6.4
Mathematics Instructional Time at Grade 8

211 Exhibit 6.5
Number of Hours Mathematics Is Taught Weekly

212 Exhibit 6.6
Frequency of Outside Interruption During Mathematics Lessons

213 What Activities Do Students Do in Their Mathematics Lessons?

217 Exhibit 6.7
Mathematics Class Size

218 Exhibit 6.8
Time Spent on Various Activities in Mathematics Class

219 Exhibit 6.9
Students Doing Various Activities in Mathematics Class

220 Exhibit 6.10
Presentational Modes Used in Mathematics Class

222 Exhibit 6.11
Index of Teachers’ Emphasis on Mathematics Reasoning and Problem-Solving (EMRPS)

225 How Are Calculators and Computers Used?

227 Exhibit 6.12
Calculator Use in Mathematics Class

228 Exhibit 6.13
Index of Emphasis on Calculators in Mathematics Class (ECMC)

230 Exhibit 6.14
Frequency of Computer Use in Mathematics Class

231 Exhibit 6.15
Access to the Internet and Use of the Internet for Mathematics Projects

232 What Are the Roles of Homework and Assessment?

234 Exhibit 6.16
Index of Teachers’ Emphasis on Mathematics Homework (EMH)

236 Exhibit 6.17
Types of Assessment Teachers Give Quite a Lot or A Great Deal of Weight

237 In What Types of Professional Development Activities Do U.S. Mathematics Teachers Participate?

239 Exhibit 6.18
Students Taught by Teachers Who Participated in Professional Development – Classroom Observation

240 Exhibit 6.19
Students Taught by Teachers Who Participated in Professional Development – School- and District-Based Activities

241 Exhibit 6.20
Students Taught by Teachers Who Participated in Professional Development – Workshops, Conferences, and Networks

242 Exhibit 6.21
Students Taught by Teachers Who Participated in Professional Development – Individual Activities*

243 Exhibit 6.22
Professional Development Topics Emphasized Quite a Lot or A Great Deal

244 Exhibit 6.23
Content Areas Focused On in Professional Development

245 Exhibit 6.24
Familiarity with Curriculum Documents
Reference 2

The Mathematics Curriculum

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2.1</td>
<td>Organization of Mathematics Instruction</td>
</tr>
<tr>
<td>R2.2</td>
<td>Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Fractions and Number Sense</td>
</tr>
<tr>
<td>R2.3</td>
<td>Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Measurement</td>
</tr>
<tr>
<td>R2.4</td>
<td>Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Data Representation, Analysis, and Probability</td>
</tr>
<tr>
<td>R2.5</td>
<td>Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Geometry</td>
</tr>
<tr>
<td>R2.6</td>
<td>Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade – Algebra</td>
</tr>
<tr>
<td>R2.7</td>
<td>When Fractions and Number Sense Topics Are Taught</td>
</tr>
<tr>
<td>R2.8</td>
<td>When Measurement Topics Are Taught</td>
</tr>
<tr>
<td>R2.9</td>
<td>When Data Representation, Analysis, and Probability Topics Are Taught</td>
</tr>
<tr>
<td>R2.10</td>
<td>When Geometry Topics Are Taught</td>
</tr>
<tr>
<td>R2.11</td>
<td>When Algebra Topics Are Taught</td>
</tr>
</tbody>
</table>

Reference 3

Teachers and Instruction

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3.1</td>
<td>Teachers’ Confidence in Their Preparation to Teach Mathematics Topics</td>
</tr>
<tr>
<td>R3.2</td>
<td>Shortages of Teachers Qualified to Teach Mathematics Affecting Capacity to Provide Instruction</td>
</tr>
<tr>
<td>R3.3</td>
<td>Percentage of Students Whose Mathematics Teachers Agree or Strongly Agree with Statements About the Nature of Mathematics and Mathematics Teaching</td>
</tr>
<tr>
<td>R3.4</td>
<td>Percentage of Students Whose Mathematics Teachers Think Particular Abilities Are Very Important for Students’ Success in Mathematics in School</td>
</tr>
<tr>
<td>R3.5</td>
<td>How Teachers Spend Their Formally Scheduled School Time</td>
</tr>
<tr>
<td>R3.6</td>
<td>Average Number of Instructional Days in the School Year</td>
</tr>
<tr>
<td>R3.7</td>
<td>Asking Students to Do Problem-Solving Activities or Computation During Mathematics Lessons</td>
</tr>
<tr>
<td>R3.8</td>
<td>Students Using Things from Everyday Life in Solving Mathematics Problems</td>
</tr>
<tr>
<td>R3.9</td>
<td>Students’ Reports on Frequency of Calculator Use in Mathematics Class</td>
</tr>
<tr>
<td>R3.10</td>
<td>Ways in Which Calculators Are Used</td>
</tr>
<tr>
<td>R3.11</td>
<td>Amount of Mathematics Homework</td>
</tr>
<tr>
<td>R3.12</td>
<td>Assigning Mathematics Homework Based on Projects and Investigations</td>
</tr>
<tr>
<td>R3.13</td>
<td>Frequency of Having a Quiz or Test in Mathematics Class</td>
</tr>
</tbody>
</table>

Reference 4

School Contexts for Learning and Instruction

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>R4.1</td>
<td>Shortages or Inadequacies in General Facilities and Materials That Affect Schools’ Capacity to Provide Mathematics Instruction Some or A Lot</td>
</tr>
<tr>
<td>R4.2</td>
<td>Shortages or Inadequacies in Equipment and Materials for Mathematics Instruction That Affect Schools’ Capacity to Provide Mathematics Instruction Some or A Lot</td>
</tr>
<tr>
<td>R4.3</td>
<td>Availability of Computers for Instructional Purposes</td>
</tr>
<tr>
<td>R4.4</td>
<td>Schools’ Access to the Internet</td>
</tr>
</tbody>
</table>